(5x^2-7x+3)=(2x^2+8x+1)

Simple and best practice solution for (5x^2-7x+3)=(2x^2+8x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2-7x+3)=(2x^2+8x+1) equation:



(5x^2-7x+3)=(2x^2+8x+1)
We move all terms to the left:
(5x^2-7x+3)-((2x^2+8x+1))=0
We get rid of parentheses
5x^2-7x-((2x^2+8x+1))+3=0
We calculate terms in parentheses: -((2x^2+8x+1)), so:
(2x^2+8x+1)
We get rid of parentheses
2x^2+8x+1
Back to the equation:
-(2x^2+8x+1)
We get rid of parentheses
5x^2-2x^2-7x-8x-1+3=0
We add all the numbers together, and all the variables
3x^2-15x+2=0
a = 3; b = -15; c = +2;
Δ = b2-4ac
Δ = -152-4·3·2
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{201}}{2*3}=\frac{15-\sqrt{201}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{201}}{2*3}=\frac{15+\sqrt{201}}{6} $

See similar equations:

| 3^3x–1=81 | | 3x+2=3(x-9) | | x/7=5.6/2.8 | | -51(z-21)=z+(-58) | | 6w+6w+w+w=42 | | X+26+4x+10+x+14=180 | | 6y+4+2y+7=35 | | 17k−15k=10 | | 7e+4=3- | | 23=g/6-(-22) | | 51(z-21)=z+(-58) | | 14x-4x+21=5 | | 2w-7=w | | k/6-4=4 | | (x+2)=(2x+4x-3) | | 3(x+2=12 | | 5(3b-4)=8(b+2) | | -10=6t-t^2 | | 8c+4-5c=4-4(c+5) | | 20=9x+ | | y÷2+5=7 | | 5(-6-3n)=-13+2n | | 6(x-5)+3=-27 | | 5x-4x+9=18 | | m-84/(-5)=(-3) | | F(2x+3)=-x+5 | | x+7=-14+x-3-4x | | 5x-10+50=9x-8 | | 7*5=14+p | | f/5+(-11)=(-16) | | 3=p/20 | | f5+ -11= -16 |

Equations solver categories